If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(6x^2+19x-5)=0
We multiply parentheses
12x^2+38x-10=0
a = 12; b = 38; c = -10;
Δ = b2-4ac
Δ = 382-4·12·(-10)
Δ = 1924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1924}=\sqrt{4*481}=\sqrt{4}*\sqrt{481}=2\sqrt{481}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-2\sqrt{481}}{2*12}=\frac{-38-2\sqrt{481}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+2\sqrt{481}}{2*12}=\frac{-38+2\sqrt{481}}{24} $
| 7=3v+1 | | v/3+7=9 | | 2n+2/3=2n+2/3 | | 1/5x+2/3x=13 | | 16=4-4p | | 356+365+n=977 | | 10x*4x=18.13^2 | | 31x31=x52 | | 10x*4x=18.13x^2 | | 5/12=80/x | | y+(-20)=-19 | | 10x*4x=18.13 | | 3/10=x/50 | | 8=3r-3 | | 10x*4x=18.13x | | 8=3r=1 | | aX.6259=9311.51 | | (k+3)/4=1/2 | | 9x+7/2=36+x | | a3=1 | | a1=-1 | | 7b=4b-21 | | 13x+2=12x+3 | | 5x-10x+14=3x+6 | | 20(1.5x)+40x=700 | | 8y+1=y+50 | | 2^x=1000000 | | 42.60=9g+3.81 | | 2/1r−3=3(4−2/3r) | | 18/15=n/5 | | 5/11=u/9 | | 46=-7x+13x |